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Abstract. The infinite-range Ising spin glass in the presence of a transverse field is 
considered. Using the generalised Trotter formula and replica methods, the free energy 
for the system with quenched random bond interactions is evaluated using the static 
approximation. It is shown that, when the strength of the transverse field equals the largest 
eigenvalue of the random bond interaction matrix, the spin glass transition is destroyed. 
We also show that a replica-symmetric spin glass phase is stable in a certain region of the 
temperature-field phase diagram. Finally we present suggestive arguments which indicate 
that, when the time dependence of the dynamic susceptibility is included, then the stability 
of the replica-symmetric phase is enhanced. 

1. Introduction 

In this paper we consider the effects of transverse field on the infinite-range Ising spin 
glass model, namely the Sherrington-Kirkpatrick (SK)  model [l-31. The effect of the 
transverse field on the phase diagram is studied within the so-called static approxima- 
tion. The primary purpose of the present paper is to analyse the stability of the ordered 
phase in the presence of the transverse field using the same assumptions used to 
determine the phase diagram. 

There have been several previous studies which have investigated quantum effects 
in spin glasses [4-lo]. Bray and Moore [5] showed that, for Heisenberg spins, the 
spin glass transition is not destroyed by quantum fluctuations. Most of the previous 
studies have been focused on the quantum Heisenberg model and there have been 
relatively few studies of the effect of transverse field on Ising spin glasses. Ishii and 
Yamamoto [7] have used the transverse field as the perturbation term with the zeroth- 
order term being the TAP Hamiltonian. Using standard perturbation theory they 
obtained the phase diagram which is only qualitatively correct. This is because the 
perturbation was truncated to second order. A different approach was used by Usadel 
and the phase diagram he obtained is in agreement with the present work [lo]. In 
this paper we use the approach based on the discretised path integral approach [9]. 
As mentioned above, we examine the stability of the replica-symmetric ( RS) spin glass 
in the presence of a transverse field. Our main result is that, unlike the classical SK 

model, there is a region in the phase diagram where a RS spin glass phase is stable. 
An announcement of our results was made elsewhere [ 111. 

There are possible experimental applications of the model that were first discussed 
by Pirc et a1 [6]. In mixed hydrogen-bonded ferroelectrics, Rb,-,( NH4)xH2P04, it 
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has been shown that for 0 .22s x S 0.75 a frozen phase with the characteristic of spin 
glass has been observed rather than the pure (x  = 0) ferroelectric phase or (x  = 1) 
antiferroelectric phase [ 12-15]. Here the proton tunnels between the two energy minima 
in the hydrogen bond, which is mimicked by the transverse field. The pseudospin 
model is used for the ferroelectric-antiferroelectric part. The randomness arises 
because of the mixture of ferroelectric-antiferroelectric character of the compound. 

2. The model 

The Hamiltonian for the infinite-range Ising spin glass in the presence of an external 
transverse field can be written as 

where af and U: are the Pauli spin matrices. The quenched bond interactions are 
assumed to be random and the distribution of Jlj is taken to be Gaussian: 

( 2 . 2 )  
The scaling of Jjj  - N-1'2 ensures that the free energy behaves as an extensive variable. 

For the above model the free energy can be evaluated using the replica trick [16] 

P ( J v )  = ( N/27rJ2)'" exp(-J iN/2J2) .  

-PF=[ ln  Q]=lim n - 0  ( [Q"]- l ) /n  (2.3) 

where the square brackets indicate average over the disorder. Because Ho and HI do 
not commute the evaluation of [ Q"] is more difficult than in the case for the S K  model. 
It can, however, be done using the Trotter formula [17,18]. For a given realisation 
of bonds the partition function Q can be evaluated using the eigenstates of a': 

(2.4a) 

with 

and 

( 2 . 4 b )  

Inserting the appropriate resolution of unity, using the Trotter formula [Q"] can be 
easily computed. The resulting free energy per spin can be obtained from (2.3): 

1 ' I  

-In Tr exp(Hefi) 
h':9 

( 2 . 5 ~ )  
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where 

and 

PJ ha = - (4 21 + Jx-s ZZa ). P 
Evaluating the trace and taking the limit P + 00 followed by the limit n + 0 (2.9) becomes 

(2.10a) 

where 

(2.10 b )  

(2.10c) 

The appropriate values of x and q are determined from the stationarity of the free 
energy: 

This yields the following self-consistent equations for x and q :  

af/ax = af/aq = 0. 

DZ2[( b2/E2) cosh E + ( y2p2J2/E3) sinh E] 
j DZ2 cosh E 

(2.1 1 a )  

DZ2[(b/E) sinh E] 
5 DZ2 cosh E 

(2.11b) 

with y = I-/ J. Equation (2.1 1 )  can be solved (numerically) to obtain the phase boundary 
separating the paramagnetic and the spin glass phase as a function of y. The transition 
temperature, Tc( r), is determined by the following equation: 

1 DZ2[(r$,J/Ef) cosh Ec+(y2PfJ2/Ez) sinh E,] 
j DZ2 cosh Ec 

( 2 . 1 2 ~ )  -- 
P C J  - 

(2.126) 

and Ec = PCJ(y2+ z : / /3cJ)1’2 .  On the boundary separating the paramagnetic and the 
spin glass phase, it can be shown that x = l/PcJ. In figure 1,  the critical temperature 
TC(T) is plotted as a function of the strength of the transverse field. The phase diagrams 
shown in figure 1 has been previously found by Usadel using a different approach. 
There has been some controversy regarding the field strength r where the spin glass 
transition is destroyed [20]. The presence of the transverse field leads to a reduction 
in the transition temperature. When r = 0, we find that Tc = J/kB in agreement with 
the result for the SK model. Figure 1 also shows that there exists a critical value of 
the transverse field above which the spin glass transition does not take place at finite 
temperature, i.e. Tc(Tc) = 0. The value of the critical field Tc, or equivalently yc = rc/ J, 
can easily be obtained from ( 3 . 1 ~ ) .  When Tc+O, ( 2 . 1 2 ~ )  gives an equation for y c :  

1 1 -+ = 1  
Yc y c ( y c - 1 )  

(2.13) 
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Figure 1. Phase diagram for the infinite-range k ing  spin glass in the presence of a transverse 
field evaluated using replica-symmetric order parameters. In the shaded region of the 
phase in the spin glass phase, the replica-symmetric solution is stable. The broken line 
indicates the limit of stability of the replica-symmetric spin glass phase. 

which gives r, = 2J. The value of 25  is not a coincidence and it happens to be the 
largest eigenvalue of the random matrix J,. It should be emphasised that the inclusion 
of the time dependence of x can alter the shape of the phase boundary near T = 0 or, 
more precisely, when T - 2J. Thus the vanishing of T, when T = 2 5  is true only in the 
static approximation. 

The entropy of the system can be calculated from the free energy and one finds that 

DZ, 3 sinh 3 + kB 1 DZ,  (In 1 DZ' 2 cosh 3 - 
N 4 k B T 2  I DZ, cosh E 
-- S J 2 ( x z - q 2 )  - (2.14) 

It is instructive to compute the entropy per spin, S/  N, near yc = 2 where T, is small. 
Equation (2.14) can be expanded in terms of the small parameter E = k ,  T /  J (for y - 2) 
and we find that for r = 2 J  + 0' 

s/ = ($ In 2 - a )  k ,  + 0( E ' ) .  (2.15) 

An important caveat should be added here. Equation (2.15) indicates an extensive 
ground-state entropy. We expect the entropy to vanish at T = 0 and  thus we conclude 
that the static approximation fails in this context. To verify this, we have computed 
S / N  for small T and J / T  in two ways. For T = O  and J / T < <  1, (2.14) gives S I N -  
kBJ2/4r2+ ([J/TI4).  The vanishing of S/ N for J / T +  0 indicates perfect ordering in 
the transverse direction at T = 0 .  In  the limit J / T < <  1 and T+O (which lies entirely 
in the disordered phase), S/ N can also be computed by directly evaluating the partition 
function. A perturbative expansion in J,, is valid because, for J /T<c  1, there is no 
longitudinal ordering. An exact calculation to O( J2 / r2 )  gives zero ground-state entropy 
and  the leading non-zero terms vanishes exponentially as T-,  0. Thus, we are forced 
to conclude that the static approximation fails when T / J  >> 1. Despite the failure of 
the static approximation for T + 0, the numerical value of S /  N at T = 0 (cf (2.15)) is 
0.096 k B ,  which is not very large. Thus the static approximation may be a reasonable 
first-order approximation. 

Given the above, two viewpoints are possible. The first is pessimistic. All of our 
results hinge on the static approximation. We have just argued that it is incorrect near 
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T = 0. This suggests that, for small T, all of our results are suspect. In particular, the 
region in the ordered phase that we find (cf 0 3 )  supports an R S  spin glass phase may 
be an artefact of the static approximation. The second viewpoint is optimistic. Along 
the entire phase boundary (not just near T = 0) we have tried (cf end of 0 3 )  to improve 
on the static approximation using a perturbation scheme. We find very small changes 
and the stable RS spin glass region persists. We conclude, however, that our results 
are at best suggestive and definitive results require further work. It does not appear 
easy to improve upon the static approximation. In this context, quantum Monte Carlo 
simulations may prove useful. 

3. Stability of the replica-symmetric solution 

In this section we analyse the stability of the replica-symmetric solution. The con- 
sequences of relaxing the static approximation are examined at the end of this section. 
When N + a, the integrals over the variables yj,gP) and xP,? occurring in the expression 
for free energy (cf ( 2 . 5 ~ ) )  can be evaluated by steepest descent. The result is 

1 
lim lim max - P F  -=- 

N ~ - c o n - ~  N 

where Hefi  is given by ( 2 . 5 6 ) .  In order to assess the stability of the RS spin glass phase 
in the static approximation, we write 

( 3 . 2 ~ )  xpt“ = x + &(a) 
1 1  ( 3 . 2 6 )  y c q P )  = + 7 7 ( a P )  

and expand @ F I N  to second order in the fluctuations and v(O1”. In principle, 
one should let the fluctuations, and v(OLP), depend on time. To be consistent with 
the static approximation used in evaluating the free energy we ignore the time depen- 
dence. The quantities x and y are the order parameters obtained when P F I N  (cf 
( 2 . 5 ) )  is evaluated by steepest dewent and are given by 

x = P J x / d  Y = PJS. ( 3 . 3 )  
The deviation of the free energy P F /  N from its stationary value is given by 

( 3 . 4 a )  P - [ F ( ~ + ~ ( ~ ’ ) , y + 7 7 ( ~ ~ ’ ) -  F ( x , y ) ] = - A / 2  
N 

where 

( 3 . 4 6 )  
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The average ( ) is given by 

(3.5) 

where HzF is the same as (2.5) with xzu = x and = y. The quadratic form A should 
be positive for (3.3) to be a stable solution. 

The mathematical structure of A is identical to that given by de Almeida and 
Thouless (AT) [I91 in their study of the stability of the SK solution. However, the 
correlation functions that appear in (3.46) are quite different. 

For arbitrary n there are at most five eigenvalues, two of which coincide when the 
limit n -+ 0 (which in this problem amounts to setting n = 0) is taken [ 191. The three 
eigenvalues are given by 
Al.2 = ; { ( A  - B + F -4Q+3R) * [ (A - B - P + 4 Q  - 3R), - 8( C - D)2]1’2} ( 3 . 6 ~ )  

A, = P - 2 Q +  R. (3.6b) 

The variables A, B, P, Q, R, C, D are the seven matrix elements associated with A 
[ 191 and they can be evaluated using the properties of the cyclic one-dimensional Ising 
chain. Using the results for the correlation functions, and taking the limit of P + CO, 

the eigenvalues become 

h 3 =  1 -/I DZ,(M - N ) ,  (3.7a) I 
(3.76) 

+ p 2 ( f l - j  DZ1 MN)’ (3.7c) 

where 

p = p 2 J 2  ( 3 . 8 ~ )  

M =  (3.86) 
DZ2[(b2/E2) cosh Z+(7’P2J2 /E3)  sinh E] 

J DZ, cosh E 
DZ,[(b/E) sinh E] 

N = ( J  J DZ, cosh E ( 3 . 8 ~ )  

(3.8d) 

For the stability of the static replica-symmetric solution it is necessary that the 
eigenvalues A I ,  A 2 ,  A 3  be greater than zero. It can be easily shown that, in the 
paramagnetic phase where q = 0, the eigenvalues given in (3.8) are all positive. Thus 
the paramagnetic phase is stable. In order to establish the stability of the RS solution 
in the spin glass phase we confine ourselves close to the phase transition boundary, 
where both q and x can be expanded as 

1 ( r  j ( 1  1 ( 1  1 ( 1  1 a = ~  C (pa’ p a ‘ ~ m 3  ~ a 4 ) *  
I ,  . . .  l r  

1 
X = c + a ,  t + a , t 2 + a , r 3 + .  . .  (3.90) 

q = b l t  + b2t2+ b , t 3 + .  . . (3.96) 
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where 

t = 1 - T/ Tc P c  = 1IkBTc. (3.9c) 

It can be shown by substituting (3.9) into (3.7b) and ( 3 . 7 ~ )  that, close to the phase 
boundary, the eigenvalues A ,  and A 2  are greater than zero. Thus the stability of the 
replica-symmetric state depends on the eigenvalue A 3 .  

By substituting (3.9) into the variational equations for q and x (cf (2.11)) one can 
obtain the coefficients ai and bi.  It can be shown that 

a, - b, = -l/pcJ. (3.10) 

Expanding M and N in powers of t and using (3.10) it is straightforward to show 
that the coefficient of the linear t term in the critical eigenvalue A 3  vanishes for all 
values of r. This is precisely what is found in the SK model. Thus the stability of the 
RS solution near small values of t is solely determined by the coefficient of the quadratic 
term. In the SK model, it was shown that the coefficient is negative, implying that the 
replica-symmetric solution is unstable everywhere in the spin glass phase. In the 
present problem the coefficient explicitly depends on T and one finds that for T/ J - O( 1 )  
the RS solution is stable. To show this we expand M and N to order t 2 :  

1 
M=-+t(a,(r ,  ~,)+z:a,(r ,  Tc))+t2a3(T, T,, zl)+o(r3) (3.11a) 

P C J  

N = tb l z :+P2(I‘ ,  T,, zl)t2 + O ( t 3 )  (3.11b) 

where the coefficients a,, a,, a 3 ,  P2 are complicated functions of the indicated argu- 
ments. These can be found by straightforward but tedious algebra. One can easily 
show that 

J 

r (3.12) 

Using (3.1 1 )  and (3.12) the stability condition, i.e. the positivity ofthe critical eigenvalue 
A 3 ,  becomes 

A3= 1 - p  ( M  - N ) 2  DZ1 = -k(T)t2+O(t3) > 0 (3 .13 )  I 
where 

We find that 

k(T = 0) = $ (3 .15)  

in agreement with the result obtained by de Almeida and Thouless [ 5 ] .  The RS solution 
becomes stable when k(T)  < 0. The resulting equation for TLs is found numerically 
and it turns out to be 0.855. For T > TLs we have numerically shown that k(T)  < 0 and 
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consequently the RS solution is stable. The value of k(T) is found to decrease monotoni- 
cally from its initial value of $ as r is increased. We have numerically completed the 
region of the phase diagram where the replica-symmetric solution is stable using the 
condition given in (3.13). The result is shown as the shaded area in figure 1. It should 
be noted that rLs/J - O( l ) ,  and hence the stability result would be difficult to obtain 
by perturbative treatment. 

The most serious approximation in establishing the stability of the spin glass phase 
is the neglect of the time dependence of x. The order parameter x certainly depends 
on time and recent Monte Carlo simulations also suggest this [20]. We now present 
an argument based on a rough perturbative calculation that suggests that the conclusions 
of the present section should remain valid when one relaxes the static approximation. 
It is clear that the neglect of the time dependence of x is valid when r<O.7J. The 
precise dependence of T, for T/J<< 1 can be shown to be Tc= J[l - a ( T / J ) ’ ]  where 
a > 0. In this region the correction to the phase boundary (beyond the static approxima- 
tion) is proportional to the fourth power of the field. Thus we conclude that the static 
approximation is valid when T/J is small. Recent computer studies suggest, for 
r < 0.705, that ,y in this region is almost independent of time [20]. For Tc - 0, the time 
dependence of x manifests itself essentially when t + O  (or t - ,  p ) .  To go beyond the 
static approximation, we use the following ansatz for x: 

O s t < p / 4  
x ( t ) =  X2 t < 3p/4 (3.16) c: 3p/46  t s p. 

The above approximation ensures that x is symmetric about t = p / 2 .  With this approxi- 
mation the effective Hamiltonian can be written as 

He,= H z + S H  (3 .17)  

where H z  is the effective Hamiltonian within the static approximation. Assuming 
that 6 H  is small one can show that the stability condition for the critical eigenvalue 
becomes 

~ ~ = i - p  ( M - N ) * D Z ~ - ~ A , ~ O  i (3.18a) 

with 

- 2( SHp(,i )p~2)p~31p3’)]~ (3.186) 

The averages in (3.186) are with respect to H Y .  The correlation functions appearing 
in (3.186) can be calculated using the transfer matrix for a one-dimensional nearest- 
neighbour king model in an external field. We find that A1 is always negative near 
the phase boundary. This suggests that schemes (3.16) which go beyond the static 
approximation render the replica-symmetric spin glass phase even more stable. A 
complete proof of this would require a computation of the time dependence of x ( t )  
and the stability analysis around the resulting function. Nevertheless, our argument 
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suggests that a region of the phase diagram is rendered stable in the presence of a 
transverse field. 

4. Conclusions 

The infinite-range Ising spin glass in the presence of an external transverse field provides 
a natural generalisation of the SK model that accounts for the effects of quenched 
random interactions on the tunnelling degrees of freedom. Such a model has been 
argued to be relevant for interpreting the formation of various phases in certain dipolar 
glassy systems. However, our interest has been to focus primarily on the effect of 
quantum fluctuations on the stability of the glassy phase. Our study has led us to the 
following major conclusions. 

(i) The spin glass transition temperature T, is reduced in the presence of a transverse 
field. It is clear that T, is a decreasing function of r and we have shown that T, goes 
to zero when r becomes equal to the largest eigenvalue of the random matrix. It is 
interesting that, in a recent experiment, it has been shown that, when the mixed crystal 
Rbl-x(NH4)xH2P04 is subject to external pressure (which is argued to be proportional 
to r), the proton glass transition temperature is found to decrease [9,13]. At a critical 
value of the external pressure the transition temperature goes to zero. Although the 
nature of the ordered phase in finite dimensions cannot be adequately described by 
infinite-range models, these models are useful in predicting the phase boundary. 
Consequently the results of our calculations are consistent with the gross features of 
the above experiments. We have shown that the replica-symmetric solution becomes 
stable when r - 0.85J. Although this important conclusion has been proved only under 
the static approximation, we have argued that a fuller treatment of the time dependence 
of ,y may lead to a stronger stability of the spin glass phase. 

(ii) Recent scaling theories of the ordered phase of the three-dimensional short- 
range spin glass in zero field suggest the existence of only two pure states. This is in 
direct contradiction with the Parisi solution to the infinite-range spin glass in the 
absence of a transverse field 121,221. The stability of the replica-symmetric solution 
of the infinite-range spin glass in the presence of a transverse field suggests the overlap 
distribution function: 

where a, /3 denote pure phases and wu is the weight associated with the pure state a. 
A direct verification of (5.1) can be made by showing that connected correlation 
functions vanish when the replica-symmetric solution is stable. Notice that within 
the approximation scheme we have used, (4.1) is only applicable in the shaded region 
of 1. 

(iii) A plausible physical reason for the stability of the replica-symmetric solution 
can be given in terms of the pure state picture that is suggested by the Parisi solution 
to the SK model. The ordered phase of the SK model is thought to consist of many 
pure states, ail with the same free energy per spin. The pure states are separated by 
barrier and the timescale for crossing the barrier scales as 7 - exp( and hence 
becomes infinite as N + 00 [23]. The transverse field essentially induces tunnelling 
between the pure states and we suggest that the diverging barriers are somehow 
renormalised to finite values as r becomes large enough, i.e. when r/ J - O( 1). Under 
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these circumstances, the systems coherently tunnels between what were originally ‘pure’ 
states and this leads to the overlap distribution given by (4.1). This hypothesis can be 
verified by quantum Monte Carlo simulations. 
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